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A B S T R A C T  

We prove that the reflection equation (RE) algebra £R associated with 
a finite dimensional representation of a quasitriangular Hopf algebra 74 
is twist-equivalent to the corresponding Faddeev-Reshetikhin-Takhtajan 
(FRT) algebra. We show that /2R is a module algebra over the twisted 

n 
tensor square 7-/q~74 and the double D(7-/). We define FRT- and RE-type 
algebras and apply them to the problem of equivariant quantization on 
Lie groups and matrix spaces. 

1. I n t r o d u c t i o n  

Let H be a quasi tr iangular  Hopf algebra with the universal R-matr ix  7~. Let 

V be the space of its finite dimensional representation and R the image of T4 

in End°2(V) .  We s tudy relations between two algebras natural ly arising in this 

context,  the Faddeev-Reshet ikhin  Takhta jan  (FRT) algebra TR and the so-called 

reflection equation (RE) algebra L;R. They  are bo th  quotients of the tensor alge- 

bra  T(End* (V)) by quadrat ic  relations and admit  certain Hopf algebra actions. 

So, TR is endowed with the structure of a bimodule algebra over 7- / that  is natu-  

rally extended from the bimodule s tructure on End* (V). The algebra £R is a left 

H-module  algebra with the action extended from the coadjoint representat ion on 

End*(V).  

* This research is partially supported by the Israel Academy of Sciences grant 
no. 8007/99-01. 
Received May 2, 2002 
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Our first result is that the RE algebra £n is a module algebra not only over 7/ 

but over the twisted tensor square 7/~7/. The latter is the twist of the ordinary 

tensor product 7-/® 7 /wi th  the universal R-matrix as a twisting cocycle, 7¢23 E 

(7/® 7/) ® (7/® 7/). The action of 7/ on ER is induced by the Hopf algebra 

embedding 7 / -+  7 /~7/v ia  the coproduct. 

As a corollary, we obtain that £R is a module algebra over the coopposite dual 

~*°P because there exists a Hopf homomorphism 7/.op _+ 7/~7/. Since the Hopf 

algebra homomorphisms from 7/ and 7/.op to 7 /~7 /can  be extended to a Hopf 
7~ 

algebra homomorphism from the double D(7/) to 7-/o7/, we obtain that £:R is a 

module algebra over D(7/). 

Our second result is that £R is a twist of TR as a module algebra. The 

7/-bimodule TR can be considered as a left 7/op ® 7/-module. The twist from 

7l °p ® 7/ to 7/~7/ is  performed with the help of the cocycle 74137~23, where the 

first transformation via ~r~13 converts the first tensor factor 7l °p to 7/ while the 

second twist via 7~23 makes the ordinary tensor square 7/®2 the twisted one. 

The algebra TR is commutative in the category of 7/-bimodules. Using this fact, 

we prove that £R is commutative in the category of 7/~7/-modules. In general, 

we prove twist-equivalence between the classes of FRT- and RE-type algebras, 

which we define to be commutative algebras in the categories of 7/-bimodules 
7~ 

and 7/®7/-modules, respectively. 

In particular, we introduce the RE dual algebra 7~* as an RE-type algebra that 

is twist-equivalent to the FRT-type algebra 7/* and we show that it coincides with 

the braided Hopf algebra of Majid. 

We study coactions on ~* of the Hopf algebras (7/~7/)*, 7/*, and the opposite 

Hopf algebra 7/op. We deduce properties of the 7/-equivariant homomorphism 

~* --+ 7/, ~ ~ (~, Q1)Q2, where Q = T~217¢, using the coalgebra structure over 

7 / o p  ° 

We apply our construction to the deformation quantization on Lie groups and 

matrix spaces. In particular, we show that the algebra/~t~ (g), where g is a 

semisimple Lie algebra, is the/ /h  (l~)-equivariant quantization of a special Poisson 

structure on the corresponding Lie group, the RE bracket. It is known that  the 

quotient of Tn by torsion is the quantization on the cone End~(V) of matrices 

whose tensor square commutes with the image ft of the split Casimir, the invari- 

ant symmetric element from g®2. As an implication of the twist-equivalence be- 

tween £n and Tn, we find that the quotient of £n by torsion is the b/h(g)~//h(g)- 

equivariant quantization on Enda(V).  

The setup of the paper is as follows. Section 2 contains basic facts about quasi- 
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triangular Hopf algebras, the twist transformation, and the relation between the 

double and twisted tensor square. Section 3 recalls what are modules and co- 

modules over Hopf algebras. The relations between the FRT and RE algebra and 

their implications are studied in Section 4. Section 5 is devoted to applications 

to the equivariant deformation quantization on Lie groups and matrix spaces. 

2. Quasitriangular Hopf algebras 

2.1. DEFINITIONS AND ELEMENTARY PROPERTIES. In this subsection, we recall 

basic definitions of the quasitriangular Hopf algebra theory, [Drl]. For a detailed 

exposition, the reader can consult [Mj]. Let N be a commutat ive algebra over a 

field of zero characteristic. Let 74 be a Hopf algebra over K, with the coproduct 

A: 74 --9 74 (~9 74, eounit c: 74 --4 IN, and antipode ?: 74 -+ 74. Throughout 

the paper, we adopt the standard notation with implicit smnmation in order 

to explicate factors of tensor objects, e.g., we write ~ = qh c:~ "'" @ Ok for an 

element ~ E 74ok. For the coproduct, we use the symbolic Sweedler notation, 

A(x) = x(1) O x(2), x E 74. 

A Hopf algebra 74 is called q u a s i t r i a n g u l a r  if there is an element 7~ E 74o2, 

the universal R-matrix,  such that  

(1) (A ~-) id)(T~) = 7~13T~23, (id @ A)(~-~) = "~13~]'~12 

and, for any x E 74, 

(2) h A ( x )  = A°P(x)r~. 

The subscripts in (1) specify the way of embedding 7-/@2 into ~.~@3, namely, T~12 = 

T~I OT~2 (Z~ 1, 7~13 = 7~10 10T~2, and ~'~23 ~--- 1 0 ~ l  ©~2.  Tile opposite coproduct 

A °p is the composition of A and the flip operator r on 74 (92. 

The following identities are implications of defining relations (1) and (2): 

(3) (eOid)(T~)=l</1, (id@c)(T4)=l(~l, 
(4) (7 (:) id)(T~) = ~ - t  (id @ 7)(T~-l) = 7~. 

Also, the Yang--Baxter equation in 7t °3, 

(s) T~12T~13T~23 = "/~23T~13T~12, 

follows fi'om (1) and (2). 
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There is an alternative quasitriangular structure I on 7-/ with the universal 

R-matrix 7~2~ = r(7~-1). Obviously, it fulfills conditions (1) and (2). 

The opposite Hopf algebra 7-lop is endowed with the opposite multiplication 

m o p  = m o T, where m is the original one. Similarly, the coopposite Hopf algebra 

74 °p has the coproduet A °p = r o A. The antipode of 7t is an isomorphism 

between 7t and ~/Opp, being an anti-algebra and anti-coalgebra map. Important 

for our exposition is that  we may also treat it as an isomorphism between 7-top 

and 7-l °p . 

The dual Hopf algebra 7t* is spanned by matrix coefficients of all finite dimen- 

sional representations 2 of 7/. There are two remarkable maps from 7t *°p to 

defined via the universal R-matrix: 

(6) R + (v)  iV, l ?  2 ,  V e T-I *°p, where R + = ~  and ~ - = 7 ~ t : .  

It follows from identity (1) that they are Hopf algebra homomorphisms 7-l *°p ~ 7i 

(as was already mentioned, the element T~-~ satisfies (1) as well). 

The tensor product .4 ®/3 of two Hopf algebras .4 and B is a Hopf algebra 

with the multiplication 

(7) (al ® b:)(a2 Q b2) = a la2  @ bib2, ai E .4,  bi C 13, i = 1, 2, 

coproduct 

(s) A(a Q b) = (a(1) @ b(u ) ® (a(2) @ b(2)), a e .4, b E U, 

counit e = e.4 G e~, and antipode ? = 7.4 Q 7u. If .4 and B are both quasi- 

triangular, so is .4 c,3 B. Its universal R-matrix is 

(9) T~Ao~ = RAT~,  

where 7~`4 and ~ u  are the R-matrices of A and B naturally embedded in 

(A O B) °2. 

Remark 2.1: In the infinite dimensional case, we assume that all algebras are 

complete in some topology. It may be, for example, the h-adic topology in the 

case K = C[[h]]. All tensor products are assumed to be completed. 

1 They may coincide. 
2 We assume that the supply of representations is large enough to separate elements 

of 7-/. 
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2.2. TWIST OF H O P F  ALGEBRAS. In this subsection, we collect several facts 

and examples, which will be essential for our further exposition, concerning the 

twist transformation of Hopf algebras, [Dr2]. Let ~ be an invertible element from 

7/Co 7/satisfying the cocycle constraint 

(~o) (A O id)(Y)3c~2 = (id Q A)(Y)~2a, 

with the normalizing condition (c ® id)(S') = 1 0  1 = (id Q e)(5).  There exists 

a new Hopf algebra structure 7t on 7/ with the same multiplication and counit 

but the "twisted" coproduct 

(11) ,~(x) = . .~" - IA(x ) .T ,  X • ~1-~, 

and antipode 

"~(g) = U--I"/(X)U, where u = 7(Yl)~-~ • 7/. 

Condition (10) ensures the coproduct/X being coassociative. The Hopf algebra 

is quasitriangular, provided so is 7/. Its universal R-matrix is expressed through 

the old one and the twisting cocycle: 

(12) /~ ~--- .~1,~. ,~.  

We call algebras 7-/ and ~ twis t -equ iva len t  and use the notation ~ ~ 7t or 

simply ~ ,-- 7/ when the exact form of ~- is clear from the context. Obviously, 

7/2 ~ 7/1 and 7/3 ~ 7/2 imply "Ha 7k~2 7/1. Also, if 7/2 ~ 7/1, then 7/1 ~'~ 7/2. 
Essential for us will be the following examples. 

Example 2.2 (Coopposite Hopfalgebra): Given a quasitriangular Hopf algebra 
7-/its coopposite algebra 7/op can be obtained by twist with 3 c = ~ - 1 ,  el. equation 

(2). The cocyele condition (10) follows fronl the Yang Baxter equation (5). 

Example 2.3 (Twisted tensor product): Let 7/be  the tensor product 7-/= A~.)B 
of two Hopf algebras with multiplication (7) and coproduct (8). An element 

P • BC)A may be viewed as that from 7/(~7/via the embedding (I~B)O(AQ1) C 

(A ~;7_) B) O (A O/~). If 3 c satisfies the identities 

(13) (AuOid)(F)  = 3c133c23 C B(i:,BG)A, (i&:)AA)(¢-) = .~'13.~'12 • I3~iAc~A, 

it also flflfills the cocycle condition (10), [RS]. 
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Definition 2.4: T w i s t e d  t e n s o r  p r o d u c t  A~B of two Hopf algebras is the 

twist of ,4 ® B with a cocycle ~- satisfying (13). 

An immediate corollary of conditions (13) is that  the evaluation maps id ® ~ :  

A~B --+ ,4 and cA ® id: A~B -+ 13 are Hopf ones. Note that,  contrary to the 

ordinary tensor product, the embeddings of A and B into A~B are algebra but 

not coalgebra maps. 

An important example of the twisted tensor product is when A = /~ = 7/ is 

a quasitriangular Hopf algebra and ~" = T~. Condition (13) then holds because 

of (1). This particular case is called tw i s t ed  t e n s o r  s q u a r e  of 7t and denoted 

7/~7/. It is convenient for our exposition to take the universal R-matrix T~-3~+4 

for the ordinary tensor product 7/® 7/, see (6) and (9). Then formula (12) gives 

the universal R-matrix of 7/~7/: 

(14) - 1 -  + 

2.3. DRINFELD~S DOUBLE AND TWISTED TENSOR SQUARE. This subsection 

is devoted to a relation between the double D(7/) of a quasitriangular Hopf 

algebra 7/-/and its twisted tensor square 7/~7/. A particular case of the so-called 

factorizable Hopf algebras was considered in [RS]. For those algebras, the double 

D(7/) is isomorphic to 7/~7/. In general, there is a Hopf algebra homomorphism 

from D(7/) to 7/~7/. 

As a coalgebra, the double D(7/) coincides with the tensor product 7 /G  7/,op. 
Both of 7/-/ and 7/,op are embedded in D(7/) as Hopf subalgebras. The cross- 

commutation relations between elements from the two tensor factors can be 

written in the form 

(15) (/](1), X(1))/](2)X(2) ~- (/~(2), X(2))Z(1)/](1), 

for any x E 7/, ~ E 7/,op. In the finite dimensional case, they are equivalent to 

the Yang-Baxter equation on the canonical element ~ i  ei Q e i, where {ei} C 7/ 
and {e i} C 7/*°~ are dual bases. Then D(7/) is dual to the twisted tensor product 

7/ ®7"top, where ~- = ~ i  ei Q e i is considered as an element fi'om ?-top Q 7/*. 

PROPOSITION 2.5: Let 7/ be a quasitriangular Hopf algebra. The coproduct 

(16) H ~ H~7/ 

and the composite map 

(17) 7/,ov _ ~  7/,op ® H,op n+®~ n -  H ~H  
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are Hopf algebra homomorphisms. 

Proof: Straightforward.  II 

Homomorph i sms  (16) and (17) may  be extended to D(7/).  For finite dimen- 

sional Hopf  algebras,  a proof  of this s t a tement  can be found in [Mj]. Infinite 

dimensional  Hopf  algebras like quan tum groups are of p r imary  interest  for this 

article, and we present here a proof  suitable for the general case. 

THEOREM 2.6: Let 7/ be a quasitriangular Hopf algebra. Then, maps  (16) and 
(17) define a Hopf homomorphism D( 7/ ) --+ 7/~ 7/. 

Proof'. As a linear space, the double coincides with the tensor product  of 7 / a n d  

7/,op, which are embedded  in D(7/) as Hopf  subalgebras.  Taking Proposi t ion 2.5 

into account,  it suffices to show tha t  the pe rmuta t ion  relations between elements  

of 7/ and 7/,op are respected.  Applying maps  (16) and (17) to bo th  sides of 

identi ty (15), we come to the equat ion 

{.~], - + + - + + 7~ 1 7~ 1 x(1)}7~ 2 x(2) (</T~-x(3) = (~1, x(3)7~ 7~ 1 )x(1)7~ 2 0  x(2)7~- 

tha t  must  hold for any x C 7 / a n d  ~ E 7/.op. I t  is flflfilled indeed, because bo th  

of the elements  7~ ± satisfy equat ion (2). | 

3. Modules  over Hopf  algebras 

3 .1 .  M O D U L E  ALGEBRAS. This  subsection contains some facts abou t  the mod-  

ules over a Hopf  algebra 7/. An associative algebra .4 is called a left 7 / - m o d u l e  

algebra if the mult ipl icat ion ,4 ~) .A -+ .4 is a h o m o m o r p h i s m  of 7/-modules.  

Similarly, one can consider right modules  over 7/. Explicitly, for any x C 7 / a n d  

a, b E .A the consistency conditions read 

(18) x~>(ab) = (x(1)t>a)(x(2)~>b),(ab)<x= (a<x<~))(b<x(2)), 

(19) I t> a = a, x c> 1A = e(x)ln,a <3 1 = a, In  <3 x = e(X)IA, 

for the left and right actions ~ and <. If A is s imultaneously a left and right 

module  and the two actions commute ,  

(20) "~1 E> (a <3 3"2) = (3"1 [:> a) <3 x2, Xl ,  x2 E "]-~, a E A ,  

then it is called b i r n o d u l e .  A is an 7 / - b i m o d u l e  a l g e b r a  if its b imodule  and 

a lgebra  s t ructures  are consistent in the sense of (18)-(19).  
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Example 3.1 (Adjoint action): A Hopf algebra 7/ is a left and right module 

algebra over itself with respect to the left and right adjoint actions 

(21) ad(x) ~ y = x(1)yT(x(2)), y < ad(x) = 7(X(l))yx(2), 

for x, y E 7/. 

Example 3.2 (Dual Hopf algebra 7/*): A Hopf algebra 7/ is a bimodule over 

itself with respect to the regular actions by multiplication from the left and 

right. However, these actions do not respect the multiplication in 7/. On the 

contrary, the dual (coregular) actions are consistent with the multiplication in 

7/*, so the latter is an 7/-bimodule algebra. Explicitly, the coregular actions can 

be expressed via the coproduct in 7/* and the pairing (., . /between 7/* and 7/: 

(22) xc>a=a(1)(a(2),x}, a<x= (a(1),x}a(2), 

where x E 7-/and a c 7/*. 

Example 3.3: Let 7 / b e  a Hopf algebra and `4 its bimodule algebra. Then `4 is 

a left 7/op © ?-/-module algebra with the action 

(23) (xGy) t>a=yt>a<x, xOyET/opQ7/ ,aE`4 .  

It is a left 7/op ~ 7/-module algebra with the action 

(24) (xQy) t>a=yr, a,~7(x), x, yC7 / °POT/ ,aEA.  

This example means that we may consider only left modules, instead of bi- 

modules. 

Twist of Hopf algebras induces a transformation of their module algebras. Let 

,4 be an ?-/-module algebra with the multiplication m and let ~ ~ 7/. The new 

associative multiplication 

(25) rh(a©b)=m(.~l c>aQ~2t>b), a, bc `4, 

can be introduced on A. We denote this algebra by 4 .  Since ~ ~_ 7/as associative 

algebras, the action of 7t on A can be viewed as that of ~ on A. This action is 

consistent with multiplication (25) in A and twisted coproduct (11) in ~ .  We 

say that .~ and .4 are tw i s t - equ iva l en t  and write .A ~ A, by analogy with the 

Hopf algebras. Also, we shall omit . f  and write simply A ~ .4 if the exact form 

of 9 c is clear from the context. 
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3.2. COMODULE ALGEBRAS. Le t / - /be  a Hopf algebra and / /*  its dual. A right 

/-/*-eomodule algebra is an associative algebra .4 endowed with a homomorphism 

6:.4 -+ .4 (~ ~* obeying the coassociativity constraint 

(26) (id (~ A) o 6 = (~ ,:=) id) o 5 

and the conditions 

(27) 6 ( 1 . a ) = I A C : I ,  (idff~e) o d = i d ,  

where the identity map on the right-hand side assumes the isomorphism .4 ® K ~- 

.4. As for the coproduct A, we use symbolic notation 3(a) = a[1] O a(2), marking 

the tensor component belonging to .4 with the square brackets; the subscript of 

the ?-/*-component is concluded in parentheses. Every right 7-/*-comodule .4 is a 

left ?/-module, the action being defined through the pairing (., .} between N and 
"H*: 

(28) x>a=a[1](a(2),x}, xct-t. ,  a E A .  

Suppose there is a map 6 from an / / -modu le  algebra .4 to .4 C)//* such that for 

any x E/-/, a E .4, and a linear flmctional c~ E .4* 

(29) c~(x~,a) = (~(a[ll){a(2),x), where 6(a) = a[1] G a(2). 

Then A is an ~*-comodule algebra with the coaction 6. Note that i f / - /o r  .4 are 

finite dimensional, equation (29) may serve as a definition of 6, so the notions of 

/-/-module and/ /*-comodule are equivalent. In general, the property of being an 

~*-comodule is stronger than of being an "/-/-module. 

Similarly to right 7-/*-comodule algebras, one can consider left. ones. They are 

also right ?-/-module algebras. 

4. FRT- and RE-type algebras 

The purpose of this section is to establish a twist-equivalence between certain 

classes of algebras relative to a quasitriangular Hopf algebra 7-/. Let V be a 

right ?-/-module of a finite rank over N and V* its dual. We identify the space of 

endomorphisms End(V) with V* c::)V and assume V to be a right End(V)-module. 

The representation p of ~/ on V is a homomorphism ~ -+ End(V). The image 

(p © p)(T4) C End~2(V) of the universal R-matrix is denoted R. Given a basis 

{el} in V, the elements c} E End(V) stand for the matrix units acting on ei by 

the rule ele) = ej6~, where 6~ are the Kronecker symbols. The multiplication in 

End(V) is expressed according to eij elk = 5~ek't i 
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The space End(V) is a bimodule for 7-I or a right module over 7-lop ~ 7-l: 

(30) A,3 (x Q y) = p(x)Ap(y), A E End(V), x ® y E 7-lop Q ~t. 

By duality, the space End*(V) is endowed with the structure a left 7-lop (~ 7{- 

module as well. 

4.1. F R T  ALGEBRA. Let {T~} C End*(V) be the basis that is dual to {e~}. 

The associative algebra TR is generated by the matrix coefficients {T~} C 
End* (V) subject to the FRT relations 

(31) RT1T2 = T2T, R, 

where T is the matrix T = ~ i , j  i J Tj ei. The matrix elements T~ may be thought 3 
of as linear functions on ?-/; they define an algebra homomorphism 

(32) TR ~ 7-/*. 

PROPOSITION 4.1: Let p be a finite dimensional representation of?-I and "JR the 

FRT algebra associated with p. Then TR is a ?-l-bimodule algebra, with the left 

and right actions 

(33) x ~ > T = T p ( x ) ,  T <x = p(x)T, x E ?-t 

extended from End*(V). It is a bialgebra, with the coproduct and counit being 
defined as 

(34) A(T~) = ~ TJ (3 T~, c(Tj) = ~}. 
I= l  

Composition of the coproduct with the algebra homomorphism (32) applied to 

the (left) right tensor factor makes TR a (left) right ~t*-comodule algebra. 

Proof." Actions (33) are extended to the actions on the tensor algebra 
T(End* (V)) leaving invariant the ideal generated by (31). Regarding the bialge- 

bra properties of TR, the reader is referred for the proof to [FRT]. The comodule 
structure is inherited from the bialgebra one, so it is obviously coassociative. It 
is also an algebra homomorphism, being a composition of two homomorphisms. 
| 

We remark that the FRT relations (31) arose within the quantmn inverse 

scattering method and was used for systematic definition of the quantum group 
duals in [FRT]. 
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4.2. RE ALGEBRA.  Another algebra of interest, £R, is defined as the quotient 

of the tensor algebra T(End*(V)) by the RE relations 3 

(35) R21LIRL2 = L2R21LtR, 

where L is the matrix L = ~ i , j  Lj.e~ whose entries form the set of generators. 

In terms of the operator S = PR,  where P = ~-~i,j e(j C) e i j is the permutation on 

V O V, relations (35) can be written as 

(36) SL2SL2 = L2SL.2S. 

PROPOSITION 4.2: Let p be a finite dimensional representation of 7{ and T f  E 7{* 

its matrix coefficients. Let L~ be the generators of the algebra £R associated 

with p. Then, £.R is a left H-module algebra with the action extended from the 

coadjoint representation in End* (V): 

(37) x D L = p(?(x(l)))Lp(x(2)), x E 7-l. 

It is a right H*-comodule algebra with respect to the coaction 

(38) = Z 
l,k 

Proof." Action (37) is naturally extended to T(End*(V)) and preserves relations 

(36). The coassociativity of (38) is obvious. To prove that 5 is an algebra 

homomorphism, one needs to employ commutation relations (31) and (35). For 

details, the reader is referred to [KS]. | 

A spectral dependent version of the RE appeared first in [Chef]. In the form 

of (35), it may be found in articles [Skl, AFS] devoted to integrable models. The 

algebra t:R was studied in [KSkl, KS]. Its relation to the braid group of a solid 

handlebody was pointed out in [K]. 

4.3. FRT-  AND R E - T Y P E  ALGEBRAS: TWIST-EQUIVALENCE. 

Definition 4.3: Let 7/ be a quasitriangular Hopf algebra with the universal R- 

matrix 7~ and A its left module algebra. ,4 is called q u a s i - c o m m u t a t i v e  if for 

any a,b E A 

(39) (7~2 t> b)(TQ t> a) = ab. 

3 Although 7-R and [:R are both generated by End*(V), it is customary to use 
different letters, T and L, to denote their matrices of generators. 
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Definition 4.4: We call a quasi-commutative 7/°PQT/-module algebra an algebra 

of F R T - t y p e .  Similarly, a quasi-commutative 7/~7/-module algebra is called an 

algebra of R E - t y p e .  

Example 4.5: Let `4 an 7/-bimodule algebra for a quasitriangular Hopf algebra 

7-/ with the universal R-matrix 7~. As in Example 3.3, we can think of it as a 

left 7/°p ~) "]-/-module algebra. Let us take 7~i-317~24 for the universal R-matrix of 

7/°p Q 7/. The algebra `4 is of FRT-type if and only if for any a, b E .,4 

(40) (a <~ T~l)(b ,3 T~2) : (T~ 2 ~ b)(7~l ~ a) .  

Example 4.6: The Hopf dual 7-/* viewed as an 7/-bimodule with respect to the 

coregular actions is an FRT-type algebra. Relation (40) is a consequence of (2). 

Example 4.7: The FRT algebra TR associated with a finite dimensional rep- 

resentation of 7-/ is of FRT-type. Indeed, it is enough to check commutation 

relations (4.3) on generators. Reduced to the matrix elements T~ generating TR, 

condition (40) turns into (31). 

PROPOSITION 4.8: Let 7/ be a quasitriangular Hopf algebra and let ~l ~ 7/. I f  

,4 is a quasi-commutative 7~-module algebra, then the twisted ~-module algebra 

~ `4 is also quasi-commutative. 

Proo~ Condition (4.3) holds for twisted multiplication (25) in A and R-matrix 

(12) of ~ .  | 

THEOREM 4.9: An 7/°p Q 7~-module algebra is twist-equivalent to an 7/~)7/- 

module algebra. 

Proof Let 7~-317~24 be the universal R-matrix for 7/°p Q 7/. The twist 

from 7/°p ® 74 to 7-/Q 7 /wi th  the twisting cocycle 7~13 E (7/°p ® 7/) Q (7/°p ® 7/) 

turns it into the R-matrix T/3/7~24. Further twist with the cocycle "R23 E 

(7/ ® 7 / ) ®  (7/ Q 7t) transforms 7-/ ® 7{ into 7/~7/ with the R-matrix 

~ 4 7 U 3 7 ~ 2 4 ~ 2 3 ,  see (14). | 

COROLLARY 4.10: Let .4 be an 7/-bimodule algebra and .~ its twist-equivalent 

/eft 7/~7/-module algebra. The algebra f l  is of RE-type if and only if .4 is of 

FRT-type. Then, for any a, b C fl  

(41) (7~1, E> a,~ 7~2)(b <3 7~1 ,~ T/2,) = (~1' t>7~2 t> b)(~l E> a,~ T42,), 
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where the primes distinguish different copies of T4. 

Proof." By Proposition 4.8, A is of RE-type i f f A  is of FRT-type; then A satisfy 

(40). Twist from 7/op ® 7 / t o  7/(~7/converts (40) to (41). The action of 7/~7/on 

is expressed through the right and left actions of 7 /on  A as in (24). | 

PROPOSITION 4.11: Let p be a finite dimensional representation of 7/. The 

RE  algebra £ n  associated with p is an RE-type algebra, provided the universal 

R-matrix is taken as in (14). It is twist-equivalent to Tn. 

Proof  First, let us prove that £R is an 7/~7/-module algebra. Define the left 

7/®7/-action on End* (V) by the formula 

(42) 
T~ 

(x c.~ y) ~, L = p(?(x))Lp(y),  x Q y E 7/®7/, 

where {L~ } C End* (V) is the dual basis to {e~ }. This action is uniquely extended 

to T(End*(V)) to make it an 7/~7/-module algebra. It is easy to see that action 

(42) respects relations (35) thus reducing to an action on £n.  Now we show 

that £ n  is of RE-type. Abstract commutation relations (4.3) are specialized to 
7~ 

(41) for quasi-commutative 7/oT/-module algebras. Evaluated on the generators 

L}, they turn into the reflection equation relations (35). On the other hand, as 

mentioned in Example 4.7, the FRT relations (31) are the reduction of (40) to 

the generators of Tn. The twist that relates identities (40) and (41) transforms 
relations (31) to (35). | 

4.4. RE D U A L  ~-~* AND ITS PROPERTIES. Theorem 4.9 allows us to define the 
RE analog of the algebra 7-/* for any quasitriangular Hopf algebra. 

Definition 4.12: Ref lec t ion  equa t i on  dua l  7~* to a quasitriangular Hopf 

algebra 7/ is an RE-type algebra, the twist of 7t* viewed as a coregular left 

7/op ® 7/-module with action (24). 

Let m be the multiplication in 7/*. Formula (25) gives the multiplication in 

7~* which is expressed through the universal R-matrix and the coregular actions 
of 7/ on 7-/*: 

(43) rh(a G b) = m(7~a t> a ~ T4v • b < 7(~2) < ~2,). 

It follows that  7~* is isomorphic as an associative algebra to the braided Hopf 

algebra introduced by Majid using other arguments, [Mj]. 



24 J. DONIN AND A. MUDROV Isr. J. Math. 

PROPOSITION 4.13: 74" iS a left module algebra over the Hopf  algebras 7/, 7/.op 

and the double D(7/). 

Proo~ An immediate corollary of Proposition 2.5 and Theorem 2.6. | 

Let (7/~7/)* be the dual Hopf algebra to 7/~7/. As a coalgebra, it coincides 

with the tensor product 7t* @ 7/*. The multiplication in (7/~7/)* is expressed 

through coregular actions (22) of the universal R-matrix of 7/: 

(~ o 9)(?] o ~) = c~(n2 ~ ?] ~ n~, ' )  o (Tq ~/~ ~ ni;1)¢, 

for a ®/3 and ?] ® ~ E (7/~7/)*. 

PROPOSITION 4.14: 3q* is a right (7/~7/)*-comodule algebra with the coaction 

expressed through the coproduct and antipode in 7/*: 

(44) ~(?]) = ?](2/o (~(?](1)) e ?](3)), ?] e ~*. 

Proof." Map (44) satisfies condition (29) with left action (24). | 

COROLLARY 4.15: 7~* is a right 7/*-comodule algebra with the coaction 

(45) (f(?]) --- ?](2) Q 7(?](1))?](3), ?] E 7t*. 

75t * is a right 7/op-Comodule algebra, with the coaction 

(46) 5(?]) ~- ?](2) @ (?](3), ~UI)("/(?](I)) ,  T ~ 2 ) ~ l ~ l ,  ?] E ~Q*, 

where (., .} is the Hopf pairing between 7/* and 7/. 

Proo~ The Hopf embedding (16) gives rise to the reversed arrow (7/~7/)* ~ 7/* 
acting by multiplying the tensor factors. It remains to apply this homomorphism 

to the term in (44) that is confined in parentheses, to obtain (45). Sinfilarly, 

evaluating the map (7/~7/)* --+ 7/op, which is dual to the Hopf algebra homo- 

morphism (17), we come to (46). | 

LEMMA 4.16: The counit ¢ of?l* is a character of the RE  dual ~* 

Proof'. Applying e to the twisted product (43) we find, for a, b C 7t*, 

e o rh(a (3 b) =e o m(R1 t, a ,~ 7"~ 1, @ b ,~ 7(7~2) < 7~2, ) 

= ( a ,  T~l ,n l} (b  , ~ / (n2)~2 ,  } : c(a)~(b) .  

We used the identity T~t,~l @ 7(T~2)T¢2, = 1 Q 1 following from (4). | 
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PROPOSITION 4.17: Let Ill be a quasitriangular Hopf  algebra with the universal 

R-matrix 74.. Consider the element Q = 742174 c 7-I °2. The map 7~* -+/-/defined 

by the correspondence 

where (., .} is the Hopf pairing between 1-[* and ~ ,  is a homomorphism of the 

coadjoint and adjoint N-module algebras. 

Prook According to Lemma 4.16, the counit of 7/* is a character of ~*.  Ap- 

plying the antipode to the right tensor factor of (46) we pass to a left comodule 

structure with respect to the Hopf algebra t-I °p. Applying the counit to the left 

tensor factor belonging to ~*,  we obtain an equivariant homomorphism of ?-/- 

module algebras 7~* --+ 7-/. Taking composition of (c (9 3) with coaetion (46) we 

obtain (47): 

o -y) o -1 =<'(2), ~'~1' } ("~('F](I))' T~'2)'~(']~ 1"~1) 
(48) 

= ( , ,  1) = ( . ,  74274,,)741742,. 

Here we used (7@3')(74) = 74 and (idO7)(74 -1) = 74, see (4). Equivariance of map 

(47) may be derived from the comodule structure (46). However, it is readily seen 

directly. Since A(x)Q = QA(x) for every x E 7"/, one has 7(xO))Qlx(2 ) (9 Q2 = 

Q1 (3~ xfl)Q27(x(2)). Then, 

(49) (x(2) > q ,a -),(X(l)) , ~1>~.~2 = <,,  ,'~(x(1))~.~13:'(2)}O~2 ~-- (1~, ~ l > X ( 1 ) ~ 2 ~ ( x ( 2 ) )  , 

for :r C N and 7/C ~*.  II 

5. Applications: equivariant quantization on G-spaces 

In this section, we specialize the constructions of the previous sections to the 

deformation quantization situation when 7-/ = Uh(g), a quantum group corre- 

sponding to a semisimple Lie algebra g. 

5 .1 .  QUANTIZAT1ON ON THE GROUP SPACE G.  Let G be a semisimple Lie 

group equipped and g its Lie algebra. An element ~ E g generates left and right 

invariant vector fields 

d t~ df(et~g)l~=o, = = 

defining the left and right actions of the algebra b/(g) on functions on G. Given 

an element ~/, E /d(g), by g," and ~t we correspondingly denote its extensions 
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by the right- and left-invariant differential operators on G. We use notation 

Gad = El _ ~r  for the vector field generated by the element ~ E 9 via the adjoint 

action a ~-+ g - lag  of G on itself. 

Let r E A2g be a classical r-matrix and co the invariant symmetric element such 

that r + co satisfies the classical Yang-Baxter equation, [Drl]. Let b/h(g) be the 

corresponding quantum group. 

PROPOSITION 5.1: The R E  dual l~ (g )  to the quantum group Uh(9) is a 

Hh(9)OHh(9)-eqmvanant quantization of the Poisson bracket 

(50) rr,r + rt,t _ rl,r _ rr,l + (wr,l _ cot,r) 

on the group G. It turns into a Hh(g)-equivariant quantization of the bracket 

(51) rad,ad ~_ (cord _ col,r) 

via the Hopf  algebra embedding A: Hh (g) --+ Hh (9)~Hh (g). 

Proo~ The element r -  = ( - r ) ®  r from the exterior square A2(9 ~)9) generates 

the bivector field r~ = - r  r'T + r L'~ on G via the action of H(9)op ® H(g); r~ 

coincides with the Drinfeld-Sklyanin bracket on G. The algebra H~(9) is the 

Hh(f~) °p Q/dh(9)-equivariant quantization of r~,  [Ta]. The twist with the cocycle 

T~13 = 1 + h(r13 + co13) + o(h) converts H~(9) into the Hh(g) Q Hh (l~),equivariant 

quantization of the bracket r r,r + r l'l. Indeed, at the infinitesimal level this 

procedure adds the term 2r rx to the bracket r~.  Further twist with the cocycle 

7~23 = 1 + h(r23 + co23) + o(h) leads to the algebra/~t~(t~). In terms of Poisson 
brackets, this operation adds the term - ( r  ix + cot,r) _ (r~,Z _ wr,I) to r r'r + r t'l 

thus resulting in (50). The last statement of the proposition is straightforward. 

1 

5.2. QUANTIZATION OF POLYNOMIAL FUNCTIONS ON MATRICES. Let V be a 

complex vector space and p a homomorphism of U($) into the matrix algebra 

Ad = End(V). It induces a bimodule structure on M*: 

(x~> f ) ( A )  = f ( A p ( x ) ) ,  ( f  <x) (A)  = f ( p ( x ) A ) ,  

for x E N(9), f E .Ad*, and A ¢ 3,t. Let f2 ¢ A4 °2 be the image of the invariant 

symmetric element co. Denote by Ad ~ the cone of matrices 

M a = { d ¢  .A41 [f2, dq )  d] = 0}. 

Evidently, f14 a is an algebraic variety, it is closed under the matrix multiplication 

and invariant with respect to the two-sided action of the group G. 
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Remark 5.2: We would like to stress tha t  we do not restrict the consideration 

to fundamental  representations of L/(t~). The subspace M fl coincides with M = 

End(V)  only for g = sl(n, C) and V = C '~. 

PROPOSITION 5.3: The quotient of  the algebra F.n by the torsion is a 

Uh (fJ) C)l~h (l~)-eqmvanant qTmntization of the Poisson bracket 

(52) r,.,~ + rl,l  _ / , , .  _ r,.,l + (~,.,~ _ ~l ,~) .  

Proof: It  is easy to see tha t  3,t a is the maximal  subspace in .M where bracket 

(52) is Poisson. It  was proven in [DS] tha t  the algebra Tn is a lgh(g)op Q blh(l~)- 

equivariant quant izat ion on Ad a. Applying the RE twist, we obtain the algebra 

£ n  as the quant izat ion on .A4 a. This twist t ransforms the bracket - r  I'l + r ''~ on 

Ad fl to bracket (52). This proves the statement.  | 

Note tha t  bracket (52) goes over into r ad'ad + (a~ r't - a~ l',') after restriction of 

9 • 1~ to the diagonal subalgebra. Then £R becomes an equivariant quant izat ion 

of this bracket with respect to L/h(l~) C Lth(t~)~lIh(9). 
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